
Heteroskedasticity … and Robust Standard Errors 
 
• Those SLR/MLR conditions:  LUEs and BLUE 
• … What happens under heteroskedasticity? 
• Learning from the Sample Mean Estimator 
• Turning to the SLR Model 
• Implications:  Estimation and Inference 
• Back to Basics 
• … and White Corrected Standard Errors 
• Some Examples Using ", robust" 
• Let's Get Practical! 
 
 
Those SLR/MLR conditions:  LUEs and BLUE 

1. You may recall that back at the dawn of time, we rolled out those SLR/MLR conditions: 

 

Those SLR Conditions Those MLR Conditions 

SLR.1:  Linear Model (DGM) 

0 1Y X Uβ β= + +  

MLR.1:  Linear Model (DGM) 

0 j jY X Uβ β= + +∑  

SLR2:  Random sampling MLR2:  Random sampling 

SLR3:  Sampling variation in the independent 
variable 

MLR3:  No perfect collinearity amongst the 
RHS variables 

SLR.4:  The U's have zero conditional mean: 

( | ) 0E U X x= =  for any x 

MLR.4:  The U's have zero conditional mean:  

1( | , , ) 0nE U x x =  for any 1, , nx x  

SLR.5:  Homoskedastic errors 

The U's have constant conditional variance 
2( | )Var U X x σ= =  for all x 

MLR.5:  Homoskedastic errors  

The U's have constant conditional variance: 
2

1( | , , )nVar U x x σ=  for all 1 , , nx x  

 

1) At that time, you saw that given SLR.1-.4 and MLR.1-.4,  OLS estimators were linear 
unbiased estimators, LUE's.  But you also saw that those OLS estimators were just one of 
about a gazillion LUEs.   
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2) In fact, in the context of SLR models… 

i) Any weighted average of the slopes of the lines connecting the data points to the 
samples means will also be a LUE (conditional on the x's) of the slope parameter.  

Here are a gazillion LUEs:  i
i

i

Y Y
X X

α
 −
 − 

∑ , where 1iα =∑  

2. And so while it is nice to know that OLS estimators are LUEs (given those SLR/MLR 
conditions), that alone doesn’t distinguish them from a crowd of other perhaps equally 
attractive linear unbiased estimators. 

3. But when you add SLR.5/MLR.5 (constant conditional variance of the U's) into the mix, 
OLS estimators stand alone as Best Linear Unbiased Estimators (BLUE)… so that in the 
class of LUE's, OLS estimators have the smallest variance.  That's the Gauss-Markov 
Theorem, which connects OLS and BLUE. 

4. We now turn to the question:  What if the U's are in fact heteroskedastic?  What if SLR.5 and 
MLR.5 do not hold?  What changes?  How does that impact things? 

 
… What happens under heteroskedasticity? 

5. OLS estimators remain unbiased.  If you have SLR.1-.4/MLR1.-.4, then OLS estimators are 
still LUEs, as that result does not require homoskedasticity.  But of course, there are another 
gazillion LUEs, so maybe you should not be so impressed in this regard by the least squares 
estimators! 

6. But, OLS estimators are no longer BLUE.   

If you lose homoskedasticity, then OLS 
estimators will no longer be Best Linear 
Unbiased Estimators.   

a. Recall that under OLS, you derive parameter 
estimates by minimizing SSRs, where, in a 
sense, each residual2 receives equal weight in 
the summing up process.  As you'll see below, 
under heteroskedasticity, the BLUE estimator 
will now have you minimizing weighted SSRs, 

where each residual2 is weighted by the inverse of the variance of the respective 
observation.  And so observations with higher variances will receive relatively less 
weight in summing up the residual2s. 

7. Some Intuition:  Observations from distributions having larger variances are less reliable, or 
put differently, come with more noise attached (noisier).  So while you don’t want to 
completely ignore them, you do want to pay them less attention than the more reliable 
observations from distributions with smaller variances. 

 
  



Heteroskedasticity … and Robust Standard Errors 
 

3 
 

Learning from the Sample Mean Estimator 

8. Also back at the dawn of time, you saw that with random sampling and given a certain set of 
assumptions, including homoskedasticity, the Sample Mean was a Best Linear Unbiased 
Estimator (BLUE) of the unknown mean of a 
distribution.   

9. Recall our analysis at that dawn in time: 

a. Linear unbiased estimators: 

1 1 2 2 ... n nW b Y b Y b Y= + + + , where 

1
1

n

i
i

b
=

=∑   

b. The BLUE challenge:   

min 2 22 2( ) i iVar W b bσ σ= =∑ ∑  

subject to 
1

1
n

i
i

b
=

=∑  

Note that under homoskedasticity, you could take the 2σ  outside the summation, and so 
the particular value of 2σ  does not affect the *

ib 's that solve the optimization problem. 

c. The BLUE estimator:  * 1
ib

n
= , so that 

1
iW Y Y

n
= = ∑ . 

10. Now, with heteroskedasticity, you have: 

a. Linear unbiased estimators:  Unchanged; as above. 

b. The BLUE challenge:   

min 2 2( ) i iVar W b σ= ∑  subject to 

1
1

n

i
i

b
=

=∑  

Note that under heteroskedasticity, you 
cannot simplify the expression to be 
minimized by taking 2σ  outside the 
summation.  This complicates the 
minimization problem. 

Under homoskedasticity, the level curves 
of ( )Var W  were circles, as in the figure 
above.  Now, they are ellipses (or 
ellipsoids in higher dimensions; see 
right)… as they are defined by 

2 2 2 2
1 1 2 2b b constantσ σ+ = , for some constant level. 
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c. The BLUE estimator:   

2 * 2 *( ) ( ) 2 2i i j j
i j

Var W Var W b b
b b

σ σ∂ ∂
= ⇒ =

∂ ∂
 and so 

2*

* 2
ji

j i

b
b

σ
σ

= , or  

2
* 1 / i
ib

K
σ

= , where 2

1

j

K
σ

= ∑ . 

d. And so in this simple example, the BLUE will be a weighted average of the sampled 
values, where the weights are proportional to the inverse of the respective variances (the 
noise/uncertainty attached to each observation). 

11. But wait!  You almost never know the variances of the observations, the 2
iσ .  So while all of 

this may make sense in theory, where are those weights coming from?  That's a challenge, to 
which we'll return below. 

 
Turning to the SLR Model 

12. So what happens if SLR.5 or MLR.5 is violated and you have heteroskedastic errors? 

13. The BLUE challenge remains the same… but has a new solution: 

a. Linear unbiased estimators: 

1 1 2 2 ... n nW b Y b Y b Y= + + + , where 

1
1

n

i
i

b
=

=∑  

b. The BLUE challenge:   

min 2 2
i i i iVar b Y b σ  = ∑ ∑  subject to 

0ib =∑  and 1i ib x =∑ . 

14. We'll skip the details, but not surprisingly 
(given the results above), the BLUE estimator 
under these conditions will be a weighted 
least squares estimator, where each residual2 
is now weighted by the inverse of the 
variance of the observation: 

a. min 2
0 12

1 ( )i i
i

wgtSSR y xβ β
σ

= − −∑  
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b. If you know the variances, the 2
iσ 's, then as easy way to implement this is to divide all 

the variables (including the constant variable, 1), by iσ  and run OLS, since 
2

2
0 1 0 12

1 1 ( )i i
i i

i i i i

y x
y xβ β β β

σ σ σ σ
 

− − = − − 
 

∑ ∑  

Note that in the OLS model, the simple constant variable has been replaced by a non-

constant 1

iσ
…  so to run this, the RHS would have two types of variables, the 1

iσ
's and 

the i

i

x
σ

's, and no constant term. 

c. Of course, and as above, you rarely know the variances, the 2
iσ 's…  which does make it 

rather difficult to run weighted least squares, eh?  As promised, we'll come back to this. 

 

Implications:  Estimation and Inference 
15. Let's continue with the SLR model.  Recall that under SLR.1-SLR.5, you have: 

a. SLR.5:  2( | )Var U X x σ= =  for all x. 

b. Variance and standard deviation of the OLS slope estimator: 
2 2

1 2( )
( 1)( ) xxi

Var B
n Sx x

σ σ
= =

−−∑
 and 1 2

( )
1( ) xi

sd B
S nx x

σ σ
= =

−−∑
 

c. 
2

SSRMSE
n

=
−

 is an unbiased estimator of 2σ :  2( )E MSE σ=  

d. Standard error of the slope estimator: 

1 2
( )

1( ) xi

RMSE RMSEse B
S nx x

= =
−−∑

, where RMSE MSE= . 

16. And of course, once you have the standard error, you can generate t stats, p values, and 
confidence intervals, and assess statistical significance… which is to say:  You can do 
inference! 

17. But without SLR.5/MLR.5, you lose all this… made obvious by the fact that you no longer 
have a single variance, 2σ , to estimate.  In fact, you have different 2

iσ 's for the different 
observations.  But no one told the statistical software that, and so those packages will 

continue to report 
2

SSRMSE
n

=
−

 and 1 2
( )

( )i

RMSEse B
x x

=
−∑

, even though those reported 

figures are no longer as meaningful or useful as they were under homoskedasticity. 

18. So what's an econometrician to do?  Let's get back to basics, and assume SLR.1-SLR.4. 
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Back to Basics… 

19. Assume that 0 1i i iY x Uβ β= + +  for i=1, …, n observations… so you are conditioning on the 
x’s, and assume that the 'iU s  are independent with ( | ' ) 0iE U x s = , 2( | ' )i iVar U x s σ= , and 

( , | ' ) 0i jCov U U x s i j= ≠ .  And as above, assume that you know the variances, the 2 'i sσ . 

20. Since 1 2

( ) ( )
( ) ( 1)

i i i i

i xx

x x Y x x Y
B

x x n S
− −

= =
− −

∑ ∑
∑

, 1
( )( )

( 1)
i

i
xx

x xVar B Var Y
n S

 −
=  − 

∑  
[ ]

2
2

2

( )
( 1)

i
i

xx

x x
n S

σ
−

=
−

∑  

2
2

2

( )1
( 1)( )

i
i

xxi

x x
n Sx x

σ
−

=
−− ∑∑

. 

21. So if you have heteroskedasticity, then 

2
1 2

1( )
( ) i i

i

Var B w
x x

σ=
− ∑∑

,   

where 
2( )

( 1)
i

i
xx

x xw
n S
−

=
−

 are non-negative weights summing to 1. 

22. So the variance of the slope estimator, 1B  , is 2

1
( )ix x−∑

 times a weighted average of the 

2 'i sσ , 2
i iw σ∑ , where the weights are proportional to the square of the x-distances from the 

mean. 

a. Check.  If you have homoskedasticity, then you have the usual formula: 
2

1 2( )
( )i

Var B
x x
σ

=
−∑

. 
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… and White Corrected Standard Errors  

23. Various authors have proposed different ways in which to correct reported standard errors for 
heteroskedasticity.  In what is I believe the most cited economics paper ever, Hal White 
suggested in 1980 that you use the squared residuals, the 2ˆiu  from the SLR regression, to 
estimate the 2 'i sσ .1 

24. Following this suggestion: 

a. Run the OLS regression and capture the residuals, 1ˆi i iu y xβ= −  , i=1, …, n.2   

b. If you use 2ˆiu  to estimate 2
iσ , and you make a 

2
n

n
 
 − 

 degrees of freedom adjustment to 

the formula, you can estimate 1( )Var B  using the previous formula:

2
2

1 ˆ
2 ( ) i i

i

n w u
n x x

 
 − − 

∑∑
. 

c. The square root of this will be the standard error:   

( ) 2
1 2

1 ˆ*
2 ( ) i i

i

nse B w u
n x x

 =  − − 
∑∑

 

This gives us White’s heteroskedasticity-corrected standard error, sometimes called the 
robust standard error. 

25. If you take an unweighted average of the 2ˆiu , then you have the calculated OLS variance, 
which you have seen before: 

2
2 2

1 1 / ( 2)ˆ
2 ( ) ( )i

i i

n SSR nu
n x x n x x

− = = − − − 
∑∑ ∑

. 

26. So the OLS variance (calculated assuming homoskedasticity) is driven by an unweighted 
average of the 2ˆiu , whereas the heteroscedasticity corrected variance is driven by a weighted 
average of the 2ˆiu , where the weights are proportional to the square of the x-distances from
x , the 2( ) 'ix x s− . 

27. It is often believed that robust standard errors are always larger than OLS reported standard 
errors.  Indeed, the word robust does suggest that, eh?  But that is not correct!  Robust 
standard errors are sometimes larger than reported OLS standard errors, and sometimes 
smaller.  It all depends on the relationship between the 2ˆiu  and the 2( ) 'ix x s− .  If 
observations with above average 2ˆiu  receive higher weights (have larger x-distances from the 

                                                 
1 White, Halbert (1980), "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for 
Heteroskedasticity", Econometrica, 48 (4): 817–838. 
2 Note that by construction, these will have mean 0. 
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mean, 2( ) 'ix x s− ) then the robust standard errors will be larger than the reported OLS 
standard errors, and vice –versa.  (See simulation figures and discussion below.) 

28. It is also often believed that heteroskedasticity alone causes robust standard errors to differ 
from the OLS reported standard errors.  That is also not correct.  As shown in the following 
example, if there is no systematic relationship between the 2ˆiu  and the 2( ) 'ix x s− , then the 
robust standard errors will be very similar to the reported OLS standard errors.  But reported 
standard errors will change under robust estimation of the there is some systematic 
relationship between the 2ˆiu  and the 2( ) 'ix x s− .  If that relationship is positive, then larger 
residuals will receive greater weight, and robust standard errors will be larger (and t stats 
smaller) than the reported OLS se's …  and is the relationship is negative, then the opposite 
occurs. 

29. To repeat:  Differences between reported OLS standard errors and robust se's, are not driven 
so much by heteroskedasticity alone, but rather by the extent to which that heteroskedasticity 
is correlated with deviations in the RHS variable from its mean. 
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Some Examples Using ", robust" 

30. To generate robust standard errors in Stata, just add ", robust" to the end of your regression 
command.  The estimated coefficients will be unchanged, since under SLR.1-SLR.4, OLS 
remains a LUE.  But the reported standard errors will change, and with that change, you'll see 
changes in t stats, p values, confidence intervals and perhaps, statistical significance.   

Here are two examples. 

31. Example 1 – Sovereign Debt:  Here’s an example using the sovdebt dataset (standard errors 
are in parentheses): 
 
-------------------------------------------- 
                      (1)             (2)    
                   NSRate          NSRate    
                                  (robust)   
-------------------------------------------- 
corrupt             0.562***        0.562*** 
                 (0.0369)        (0.0388)    
 
lngdp               0.343***        0.343*** 
                 (0.0380)        (0.0366)    
 
inflation         -0.0498**       -0.0498*   
                 (0.0180)        (0.0192)    
 
deficit_gdp       -0.0439**       -0.0439*** 
                 (0.0130)       (0.00909)    
 
debt_gdp         -0.00884***     -0.00884**  
                (0.00227)       (0.00279)    
 
_cons               2.593***        2.593*** 
                  (0.244)         (0.182)    
-------------------------------------------- 
N                     108             108    
-------------------------------------------- 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 

Note that not surprisingly, some standard errors have increased with the robust specification 
(corrupt, inflation, debt_gdp)… while others (lngdp and deficit_gdp) have decreased.  The 
reported coefficients are, as expected, unchanged. 
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32. Example 2 – Simulation: This example shows the importance of some sort of systematic 
relationship between the 2ˆiu  and the 2( ) 'ix x s−  in driving differences between OLS reported 
standard errors and robust standard errors.  In this example, the x's are uniformly distributed 
on [0,1], and the y's are generated by the equation i i iY x U= + , where the U's have different 
specifications to illustrate the impact of heteroskedasticity: 

a. Case I:  ~ (0,1)iU N  

b. Case II:  ~ 2 .5 (0,1)iU x N⋅ − ⋅  

c. Case III:  
1~ (0,1)

16 .5iU N
x⋅ −

  (drop the observation if 1iU > ) 

33. Case I – Standard Errors Unchanged:  No systematic relationship between the 2ˆiu  and the 
2( ) 'ix x s−  

 

 
 
------------------------------------ 
                 (1)          (2)    
                  y0           y0    
                            robust 
------------------------------------ 
x              1.083***     1.083*** 
             (0.108)      (0.106)    
 
_cons        -0.0447      -0.0447    
            (0.0623)     (0.0620)    
------------------------------------ 
N               1000         1000    
------------------------------------ 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 

34. Case II – Standard Errors Increase:  Positive systematic relationship between the 2ˆiu  and the 
2( ) 'ix x s−  

 

 
 
------------------------------------ 
                 (1)          (2)    
                  y2           y2    
                            robust 
------------------------------------ 
x              0.976***     0.976*** 
            (0.0606)     (0.0801)    
 
_cons       -0.00325     -0.00325    
            (0.0348)     (0.0437)    
------------------------------------ 
N               1000         1000    
------------------------------------ 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
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35. Case III – Standard Errors Decrease:  Negative systematic relationship between the 2ˆiu  and 
the 2( ) 'ix x s−  

 

 
 
------------------------------------ 
                 (1)          (2)    
                  y1           y1    
                            robust 
------------------------------------ 
x              0.990***     0.990*** 
            (0.0326)     (0.0201)    
 
_cons        0.00959      0.00959    
            (0.0190)     (0.0136)    
------------------------------------ 
N                903          903    
------------------------------------ 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 

 
 
Let's Get Practical! 

 

36. So what to make of all this?  The lessons are really quite simple! 

a. Run weighted least squares if you can… but no 
sweat if you can't, as OLS estimators are still LUEs, with 
either homoskedasticity or heteroskedasticity.   

b. If you want to give weighted least squares a try, 
think about using proxy variables, which might be 
correlated with the variances of the observations.  Don’t 
hold back:  Try different weighting schemes and see if the 
weights matter much.  And if they do, then deal with it! 

c. And irrespective of the weighting, add , robust to generate robust standard errors.  It's 
still OK to do this even if you do not have heteroskedasticity.  And while there are tests 
for heteroskedasticity, there is no need for them at all.  Just run , robust and move on 
with (a robust) life! 
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